T. D. n° III - Quelques applications [d'après exercices proposés par J. F. Durand dans

http: //www.math.univ-montp2.fr/~durand/bibliography/polyalgmatc.pdf]

Exercice $n^{\circ} 1$.

Soit le tableau de données

$$\mathbf{T} = \sqrt{10} \begin{bmatrix} 2 & 2 & 3 \\ 3 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 1 & 4 \\ 2 & 1 & 3 \end{bmatrix}$$

correspondant à des mesures effectuées sur 5 individus de poids statistiques égaux pour les trois variables T^1 , T^2 et T^3 . On va effectuer une ACP centrée-réduite sur ce tableau.

- 1. Calculer l'individu moyen, le vecteur $(\sigma_1, \sigma_2, \sigma_3)'$ des écarts types des variables et la matrice **X** des données centrées-réduites.
- 2. Calculer la matrice des corrélations ${f R}$
- 3. Effectuer la décomposition aux valeurs propres de R
- 4. Les deux premiers vecteurs de R sont

$$\boldsymbol{\xi}_{1}' = \frac{1}{2} \left(\sqrt{2}, 1, -1 \right)' \text{ et } \boldsymbol{\xi}_{2}' = \frac{1}{\sqrt{2}} \left(0, 1, 1 \right)'.$$

Ils sont associés aux valeurs propres

$$\lambda_1 = 1 + \frac{\sqrt{2}}{2}$$
 et $\lambda_2 = 1$.

Calculer les composantes principales \mathbf{c}_1 et \mathbf{c}_2 dont on vérifiera les propriétés statistiques

5. Représenter les individus dans le plan factoriel (1,2). Donner une interprétation de cette ACP

Exercice n° 2

Soit la matrice $\mathbf{X} = [\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3]$ dont les variables ont pour matrice de corrélation

$$\mathbf{R} = \left[\begin{array}{ccc} 1 & \rho & -\rho \\ \rho & 1 & \rho \\ -\rho & \rho & 1 \end{array} \right]$$

avec $-1 \le \rho \le 1$. On va effectuer l'ACP centrée-réduite de **X**.

- 1. Vérifier que **R** admet pour vecteur propre $\boldsymbol{\xi}_1 = \frac{1}{\sqrt{3}} \left(1, -1, 1 \right)'$
- 2. Déterminer les autres vecteurs propres et valeurs propres de ${\bf R}$
- 3. Quelles sont les valeurs possibles de ρ ? Justifier le fait que l'ACP a plus d'intérêt si $-1 < \rho < 0$. On se placera ensuite dans ce cas.
- 4. Calculer les pourcentages de variance expliquée et tracer l'éboulis de valeurs propres
- 5. Comment s'interprète en fonction de \mathbf{x}^1 , \mathbf{x}^2 et \mathbf{x}^3 l'unique composante à retenir ici?

Correction exercice n°1

1. L'individu moyen est obtenu en faisant la moyenne des colonnes du tableau T, soit $\overline{\mathbf{x}} = \sqrt{10}(2,1,3)'$. Le vecteur des écarts types est obtenu en calculant les écarts types de chaque colonnes de T. Soit \mathbf{T}_c la matrice des données centrées, $\mathbf{T}_c = \mathbf{T} - (\overline{\mathbf{x}}', \overline{\mathbf{x}}', \overline{\mathbf{x}}', \overline{\mathbf{x}}', \overline{\mathbf{x}}')'$

$$\mathbf{T}_c = \sqrt{10} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

le vecteur $\boldsymbol{\sigma} = (\sigma_1, \sigma_2, \sigma_3)'$ contient les termes en racine carrée des éléments diagonaux de la matrice $\mathbf{V} = \frac{1}{n} \mathbf{T}_c' \mathbf{T}_c$, n = 5, soit $\boldsymbol{\sigma}^2 = \frac{10}{5} (2, 2, 2)'$. Le calcul de la matrice \mathbf{X} revient à diviser chaque colonne de \mathbf{T}_c par l'écart-type de la variable correspondante :

$$\mathbf{X} = rac{\sqrt{10}}{2} \left[egin{array}{cccc} 0 & 1 & 0 \ 1 & 0 & -1 \ -1 & -1 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{array}
ight] = rac{1}{2} \mathbf{T}_c$$

2. La matrice des corrélations

$$\mathbf{R} = \frac{1}{n} \mathbf{X}' \mathbf{X} = \frac{1}{5} \frac{10}{4} \begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & 0 \\ -1 & 0 & 2 \end{bmatrix}$$

3. L'ACP centrée-réduite de **T** nécessite le calcul des vecteurs propres de **R**. On résout le système det $(\mathbf{R} - \lambda \mathbf{I}) = 0$ soit

$$(1 - \lambda) \left(\lambda - 1 - \frac{1}{\sqrt{2}}\right) \left(\lambda - 1 + \frac{1}{\sqrt{2}}\right) = 0$$

et on obtient 3 valeurs propres $\lambda_1 = 1 + \frac{1}{\sqrt{2}}, \ \lambda_2 = 1, \ \lambda_3 = 1 - \frac{1}{\sqrt{2}}$.

4. Le calcul des 2 premières composantes principales est donné par

$$\mathbf{c}^i = \mathbf{X}\boldsymbol{\xi}_i, \ i = 1, 2$$

soit pour la première, associée à la valeur propre λ_1 ,

$$\mathbf{c}^{1} = \frac{\sqrt{10}}{2} \times \frac{1}{2} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} \sqrt{2} \\ 1 \\ -1 \end{pmatrix} = \frac{\sqrt{10}}{4} \begin{pmatrix} 1 \\ \sqrt{2} + 1 \\ -\sqrt{2} - 1 \\ -1 \\ 0 \end{pmatrix}$$

et la seconde $\mathbf{c}^2 = \frac{\sqrt{10}}{2} \times \frac{1}{\sqrt{2}} (1, -1, -1, 1, 0)'$. Les propriétés de ces composantes montrent qu'elles sont orthogonales deux à deux

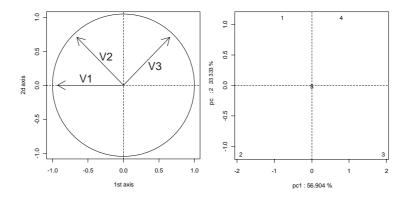
$$\left\langle \mathbf{c}^{i}, \mathbf{c}^{j} \right\rangle_{\mathbf{M}} = \frac{1}{5} \mathbf{c}^{i\prime} \mathbf{c}^{j} = 0, \ \forall i \neq j$$

et que leur norme est reliée à chaque valeur propre par

$$\left\|\mathbf{c}^{j}\right\|_{\mathbf{M}}^{2} = \frac{1}{5}\mathbf{c}^{j\prime}\mathbf{c}^{j} = \lambda_{j}, \ j = 1, 2.$$

2

5. représentation des individus dans le plan factoriel (1,2).



Le premier axe oppose les variations de V1, V2 avec V3. Le second est un axe de taille. Les individus 2 et 3 présentent de faibles valeurs de V2 et V3, l'individu 2 étant caractérisé par une forte valeur de V1. Les individus 1 et 4 sont attachés aux variables V2 et V3 respectivement. L'individu 5 est le plus consensuel puisque confondu avec le centre de gravité de l'ACP.

Correction exercice n°2

1. Si **R** admet pour vecteur propre ξ_1 alors il vérifie $\mathbf{R}\xi_1 = \lambda_1\xi_1, \ \lambda_1 \in \mathbb{R}^+$. On calcule $\mathbf{R}\xi_1$:

$$\frac{1}{\sqrt{3}} \begin{bmatrix} 1 & \rho & -\rho \\ \rho & 1 & \rho \\ -\rho & \rho & 1 \end{bmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1-2\rho \\ 2\rho-1 \\ -2\rho+1 \end{pmatrix} = (1-2\rho)\,\boldsymbol{\xi}_1$$

donc, ξ_1 est bien vecteur propre de \mathbf{R} pour la valeur propre $\lambda_1 = 1 - 2\rho$. Cette valeur propre étant positive (propriété de \mathbf{R}) on doit avoir $-1 \le \rho \le \frac{1}{2}$.

2. Pour déterminer les autres éléments propres de \mathbf{R} , on résout det $(\mathbf{R} - \lambda \mathbf{I}) = 0$, ce qui équivaut à

$$(1 - \lambda) \left((1 - \lambda)^2 - \rho^2 \right) - 2\rho^2 (1 - \lambda + \rho) = 0$$
$$(1 - \lambda + \rho) \left[(1 - \lambda) (1 - \lambda - \rho) - 2\rho^2 \right] = 0$$
$$(1 - \lambda + \rho) \left[\lambda^2 - \lambda (2 - \rho) + 1 - \rho - 2\rho^2 \right] = 0$$

On sait que $\lambda_1 = 1 - 2\rho$ est valeur propre de **R**. Ceci permet de calculer par identification la racine du polynôme ci-dessus. On montre que $\lambda = 1 + \rho$ est racine double. On peut maintenant déterminer les vecteurs propres pour cette valeur propre. Soit $\boldsymbol{\xi} = (x, y, z)'$ un vecteur vérifiant $\mathbf{R}\boldsymbol{\xi} = \lambda\boldsymbol{\xi}$. En développant, on obtient le système

$$\begin{cases} -\rho x + \rho y - \rho z = 0 \\ \rho x - \rho y + \rho z = 0 \\ -\rho x + \rho y - \rho z = 0 \end{cases} .$$

Il nous faut maintenant trouver des valeurs arbitraires de x, y et z qui vérifient ce système. On en trouve facilement 2 tiercés avec (1,1,0) et (1,0,-1) qui ne soient pas combinaison linéaire l'un de l'autre. En normalisant ces vecteurs, on obtient finalement les deux vecteurs propres $\boldsymbol{\xi}_2 = \frac{1}{\sqrt{2}} (1,1,0)'$ et $\boldsymbol{\xi}_3 = \frac{1}{\sqrt{2}} (1,0,-1)'$. Finalement, la matrice des corrélations \mathbf{R} peut être décomposée sous la forme $\mathbf{R} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}'$ avec $\mathbf{P} = [\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \boldsymbol{\xi}_3]$, matrice des vecteurs propres et $\mathbf{\Lambda}$, matrice des valeurs propres de termes diagonaux $(1-2\rho, 1+\rho, 1+\rho)$.

3. Nous avons déjà vu que les valeurs possibles de ρ sont $-1 \le \rho \le \frac{1}{2}$ pour assurer la positivité des valeurs propres. Supposons maintenant que $-1 < \rho < 0$. On peut ranger les valeurs propres par ordre décroissant avec $1-2\rho > 1+\rho$. On se rend alors compte que l'espace initial à 3 variables peut être réduit à une seule variable, combinaison linéaire des 3 variables initiales. En effet, si l'on considère le sous-espace propre de dimension 2 associé à la valeur propre double, l'information du nuage de points résumé dans cet espace est identique dans les deux directions. Cela n'apporte rien de les conserver.

- 4. Les pourcentages d'inertie expliquée sont donnés, dans chaque direction propre, par le rapport d'une valeur propre sur la somme totale des valeurs propres, égale dans ce cas à 3, puisqu'elle correspond à l'inertie totale calculée à partir de la matrice des corrélations (variables réduites). L'éboulis correspond au tracé, sur le même graphique, de barres de hauteur $(1-2\rho)/3$, $(1+\rho)/3$ et $(1+\rho)/3$.
- 5. A partir du premier vecteur propre et du tableau \mathbf{X} centré-réduit noté \mathbf{X}_{cr} , on peut calculer la composante principale

$$\mathbf{c}^1 = \mathbf{X}_{cr} \boldsymbol{\xi}_1.$$

En notant que $\mathbf{X}_{cr} = \left[\mathbf{x}_{cr}^1, \mathbf{x}_{cr}^2, \mathbf{x}_{cr}^3\right]$ et que $\boldsymbol{\xi}_1 = \left(\xi_{11}, \xi_{21}, \xi_{31}\right)'$ on peut exprimer la composante en fonction des variables initiales à un centrage et une réduction près comme

$$\mathbf{c}^1 = \xi_{11} \mathbf{x}_{cr}^1 + \xi_{21} \mathbf{x}_{cr}^2 + \xi_{31} \mathbf{x}_{cr}^3.$$

Une composante principale est donc une nouvelle variable, combinaison linéaire des variables initiales.